Email: chenzw@sioc.ac.cn
Phone: 86-021-68582392
Office: 416
Website:
Principal Investigator, Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences.
2022-now, Interdisciplinary Research Center on Biology and Chemistry, Principal Investigator
2019-2021, Fudan University, Junior Investigator
2018-2019, University of California, Berkeley, Postdoc
2012-2017, National University of Singapore, PhD in Mechanobiology
2005-2012, Southeast University, B.E and M.E in Biomedical Engineering
The membrane systems, composed of lipid bilayers, membrane proteins and the surrounding cortex, form the fundamental structures to compartmentalize a cell and its organelles. It has become increasingly clear that the membrane-based reactions are not only affected by chemical modifications, such as protein phosphorylation, but also involve crucial physical aspects such as spatial organization, mechano-transduction, phase separation, curvature-sensing, and confinement. Collectively, they contribute to the accurate modulation of cellular functions ranging from signaling reception and transduction from plasma membranes to gene transcription in nuclear envelopes. A key question in these systems is how the physical-chemical elements are integrated precisely in mesoscale (10nm-1µm), the scale at which molecules transiently associate with each other to exert a defined function.
In the Physical-Chemical Cell Signaling Lab, we aim to develop sophisticated synthetic chemical-biology tools, and high-resolution imaging methods, to solve challenging problems in the understanding of physical-chemical mechanisms of membrane adhesion and signaling. Specifically, we are interested in applying synthetic cell membranes, single molecule tracking, fluorescence correlation spectroscopy and other analytical tools to study signaling transductions in neuronal synapses and immunological synapses.
Publications
17. Chen, Z.; Biswas, K. H.; Groves, J. T., Patterned Substrate of Mobile and Immobile Ligands to Probe EphA2 Receptor Clustering. Bio-protocol, 2022 . 12 (11), e4434.
16. Zhang, C., He, H., Dai, J., Li, Y., He, J., Yang, W., Dai, J., Han, F., Kong, W., Wang, X., Zheng, X., Zhou, J., Pan, W., Chen, Z., Mahak, S., Zhang, Y., Guo, F., & Hu, J. KANK4 Promotes Arteriogenesis by Potentiating VEGFR2 Signaling in a TALIN-1 Dependent Manner. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42(6), 772.
15. Oh, D. #; Chen, Z. #; Biswas, K. H.; Bai, F.; Ong, H. T.; Sheetz, M.; Groves, J. T., Competition for shared downstream signaling molecules establishes indirect negative feedback between EGFR and EphA2. Biophysical Journal, 2022, 121(10):1897.
14. Chen, Z. #; Oh, D. #; Biswas, K. H.; Zaidel-Bar, R.; Groves, J. T., Probing the effect of clustering on EphA2 receptor signaling efficiency by subcellular control of ligand-receptor mobility. eLife 2021, 10, e67379.
13. Chen, Z. #; Cao, Y. #; Lin, C.-W.; Alvarez, S.; Oh, D.; Yang, P.; Groves, J. T., Nanopore-mediated protein delivery enabling three-color single-molecule tracking in living cells. Proc Natl Acad Sci 2021, 118 (5), e2012229118.
12. Wong, J. J. #; Chen, Z. #; Chung, J. K.; Groves, J. T.; Jardetzky, T. S., EphrinB2 clustering by Nipah virus G is required to activate and trap F intermediates at supported lipid bilayer-cell interfaces. Science Advances 2021, 7 (5), eabe1235.
11. Ravasio, A.; Myaing, M. Z.; Chia, S.; Arora, A.; Sathe, A.; Cao, E. Y.; Bertocchi, C.; Sharma, A.; Arasi, B.; Chung, V. Y.; Green, A. C.; Tan, T. Z.; Chen, Z.; Ong, H. T.; Iyer, N. G.; Huang, R. Y.; DasGupta, R.; Groves, J. T.; Viasnoff, V., Single-cell analysis of EphA clustering phenotypes to probe cancer cell heterogeneity. Communications Biology 2020, 3 (1), 429.
10. Alieva, N. O.; Efremov, A. K.; Hu, S.; Oh, D.; Chen, Z.; Natarajan, M.; Ong, H. T.; Jégou, A.; Romet-Lemonne, G.; Groves, J. T.; Sheetz, M. P.; Yan, J.; Bershadsky, A. D., Myosin IIA and formin dependent mechanosensitivity of filopodia adhesion. Nature Communications 2019, 10 (1), 3593.
9. Chen, Z. #; Oh, D. #; Dubey, A. K. #; Yao, M. #; Yang, B. #; Groves, J. T.; Sheetz, M., EGFR family and Src family kinase interactions: mechanics matters? Current Opinion in Cell Biology 2018, 51, 97-102.
8. Chen, Z. #; Oh, D. #; Biswas, K. H.; Yu, C.-H.; Zaidel-Bar, R.; Groves, J. T., Spatially modulated ephrinA1:EphA2 signaling increases local contractility and global focal adhesion dynamics to promote cell motility. Proc Natl Acad Sci 2018, 115:e5696.
7. Biswas, K. H.; Chen, Z.; Dubey, A. K.; Oh, D.; Groves, J. T., Multicomponent Supported Membrane Microarray for Monitoring Spatially Resolved Cellular Signaling Reactions. Advanced Biosystems 2018, 1800015.
6. Song, L.; Huang, C.; Zhang, W.; Ma, M.; Chen, Z.; Gu, N.; Zhang, Y., Graphene oxide-based Fe2O3 hybrid enzyme mimetic with enhanced peroxidase and catalase-like activities. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2016, 506, 747-755.
5. Yu, C.-h.; Rafiq, N. B. M.; Cao, F.; Zhou, Y.; Krishnasamy, A.; Biswas, K. H.; Ravasio, A.; Chen, Z.; Wang, Y.-H.; Kawauchi, K.; Jones, G. E.; Sheetz, M. P., Integrin-beta3 clusters recruit clathrin-mediated endocytic machinery in the absence of traction force. Nature Communications 2015, 6.
4. Yang, F.; Li, M.; Cui, H.; Wang, T.; Chen, Z.; Song, L.; Gu, Z.; Zhang, Y.; Gu, N., Altering the response of intracellular reactive oxygen to magnetic nanoparticles using ultrasound and microbubbles. Science China Materials 2015, 58 (6), 467-480.
3. Liu, P. #; Huang, Z. #; Chen, Z.; Xu, R.; Wu, H.; Zang, F.; Wang, C.; Gu, N., Silver nanoparticles: a novel radiation sensitizer for glioma? Nanoscale 2013, 5 (23), 11829-11836.
2. Chen, Z.; Yin, J.-J.; Zhou, Y.-T.; Zhang, Y.; Song, L.; Song, M.; Hu, S.; Gu, N., Dual Enzyme-like Activities of Iron Oxide Nanoparticles and Their Implication for Diminishing Cytotoxicity. ACS Nano 2012, 6 (5), 4001-4012.
1. Li, Y.; Chen, Z.; Gu, N., In vitro biological effects of magnetic nanoparticles. Chinese Science Bulletin 2012, 1-7.