Selected publications (*corresponding author)
1. Huo XY, Liu D, Zou R, Li ZP, Li Y, Pan L, Zhang Y, & Zhang ZR*. (2025) UBH-UBX module amplifies p97/VCP's unfolding power to facilitate protein extraction and degradation. Nat Commun. 16, 10162. doi: 10.1038/s41467-025-65166-4.
2. Liu D, Huo XY, Zhang X, & Zhang ZR*. (2025) The E3 ubiquitin ligase RNF126 facilitates quality control of unimported mitochondrial membrane proteins. J Biol Chem. 301, 108403. doi: 10.1016/j.jbc.2025.108403.
3. Ji J, Cui MK, Zou R, Wu MZ, Ge MX, Li J, & Zhang ZR*. (2024) An ATP13A1-assisted topogenesis pathway for folding multi-spanning membrane proteins. Molecular Cell, 84, 1917-1931
☆Highlighted with commentary by Ramanujan Hegde: Getting Membrane Proteins into Shape. Molecular Cell, 84,1821-1823
4. Hu X, Zou R, Zhang Z, Ji J, Li J, Huo XY, Liu D, Ge MX, Cui MK, Wu MZ, Li ZP, Wang Q, Zhang X & Zhang ZR*. (2023) UBE4A catalyzes NRF1 ubiquitination and facilitates DDI2-mediated NRF1 cleavage. Biochim Biophys Acta Gene Regul Mech. 1866: 194937
5. Wang L, Li J, Wang Q, Ge MX, Ji J, Liu D, Wang Z, Cao Y, Zhang Y & Zhang ZR*. (2022) TMUB1 is an endoplasmic reticulum-resident escortase that promotes p97-mediated extraction of membrane proteins for degradation. Molecular Cell 82, 3453-3467
6. Hu X, Wang L, Wang Y, Ji J, Li J, Wang Z, Li C, Zhang Y & Zhang ZR*. (2020) RNF126-mediated reubiquitination is required for proteasomal degradation of p97-extracted membrane proteins. Molecular Cell 79, 320-331
☆Highlighted with commentary by Claudia Schmidt and Alexander Stein: Off and On Again: De- and Reubiquitination during Membrane Protein Degradation. Molecular Cell, 79,203-204
7. Shi J, Hu X, Guo Y, Wang L, Ji J, Li J & Zhang ZR*. (2019) A technique for delineating the unfolding requirements for substrate entry into retrotranslocons during endoplasmic reticulum-associated degradation. J Biol Chem. 294, 20084-20096. Recommended in Faculty of 1000
8. Zhang ZR*, Bonifacino JS & Hegde RS*. (2013) Deubiquitinases sharpen substrate discrimination during membrane protein degradation from the ER. Cell 154, 609-622,
☆Highlighted with commentary by Jeffrey Brodsky: Just a trim, please: refining ER degradation through deubiquitination. Cell, 154,479-481
Other publications:
1. Long W, Li S, Wang Q, Yue W, Fu Y, Wang H, Jiang M, Hu X, Li Y, Cui J, Li A, Zhang Y, Zhang Z, & Fang Y*. (2025) SCFFBXO21-mediated ubiquitination and degradation of NMNAT2 regulates axon survival in nerve injury. J Cell Biol. 224(11): e202501072.
2. Gao J, Liu Y, Si C, Guo R, Hou S, Liu X, Long H, Liu D, Xu D, Zhang ZR, Liu C, Shan B, Turck CW, He K*, & Zhang Y*. (2025) Aspirin inhibits proteasomal degradation and promotes α-synuclein aggregate clearance through K63 ubiquitination. Nat Commun. 16(1): 1438.
3. Zhang M, Wang Z, Zhao Q, Yang Q, Bai J, Yang C, Zhang ZR, & Liu Y*. (2024) USP20 deubiquitinates and stabilizes the reticulophagy receptor RETREG1/FAM134B to drive reticulophagy. Autophagy. Online ahead of print.
4. Hou X, Zhang X, Zou H, Guan M, Fu C, Wang W, Zhang ZR, Geng Y* & Chen Y*. (2023) Differential and substrate-specific inhibition of γ-secretase by the C-terminal region of ApoE2, ApoE3, and ApoE4. Neuron. 111, 1898-1913
5. Liang W, Qi W, Geng Y, Wang L, Zhao J, Zhu K, Wu G, Zhang ZR, Pan H, Qian L & Yuan J*. (2021) Necroptosis activates UPR sensors without disrupting their binding with GRP78. Proc Natl Acad Sci USA. 118 (39): e2110476118.
6. Coelho JPL, Stahl M, Bloemeke N, Meighen-Berger K, Alvira CP, Zhang ZR, Sieber SA & Feige MJ*. (2019) A network of chaperones prevents and detects failures in membrane protein lipid bilayer integration. Nat Commun. 10, 672.
7. Plumb R#, Zhang ZR#, Appathurai S & Mariappan M*. (2015) A functional link between the co-translational protein translocation pathway and the UPR. eLife 4, e07426 (#co-first author)
8. Park SY, Waheed AA, Zhang ZR, Freed EO & Bonifacino JS*. (2014) HIV-1 Vpu accessory protein induces caspase-mediated cleavage of IRF3 transcription factor. J. Biol. Chem. 289, 35102-35110
9. Moran C, Kinsella GK, Zhang ZR, Perrett S & Jones GW*. (2013) Mutational Analysis of Sse1 (Hsp110) Suggests an Integral Role for this Chaperone in Yeast Prion Propagation In Vivo. G3: Genes, Genomes, Genetics 3, 1409-1418
10. Emerman AB, Zhang ZR, Chakrabarti O & Hegde RS*. (2010). Compartment-restricted biotinylation reveals novel features of prion protein metabolism in vivo. Mol. Biol. Cell 21, 4325-4337
11. Zhang C, Jackson A, Zhang ZR, Han Y, Yu S, He RQ & Perrett S*. (2010). Amyloid-Like aggregates of the yeast prion protein Ure2 enter vertebrate cells by specific endocytotic pathways and induce apoptosis. PLoS ONE 5, e12529
12. Zhang ZR & Perrett S*. (2009). Novel glutaredoxin activity of the yeast prion protein Ure2 reveals a native-like dimer within fibrils. J. Biol. Chem. 284, 14058-14067
13. Wang XY, Zhang ZR & Perrett S*. (2009). Characterization of the activity and folding of the glutathione transferase from Escherichia coli and the roles of residues Cys10 and His106. Biochem. J. 417, 55-64
14. Zhang ZR, Bai M, Wang XY, Zhou JM & Perrett S*. (2008). "Restoration" of glutathione transferase activity by single-site mutation of the yeast prion protein Ure2. J. Mol. Biol. 384, 641-651
15. Lian HY, Zhang H, Zhang ZR, Loovers HM, Jones GW, Rowling PJ, Itzhaki LS, Zhou JM & Perrett S*. (2007). Hsp40 interacts directly with the native state of the yeast prion protein Ure2 and inhibits formation of amyloid-like fibrils. J. Biol. Chem. 282, 11931-11940