中国科学院生物与化学交叉研究中心

设为首页 |中文版

中心概况

您的位置: 首页 > 科学研究 > 科研进展
科研进展

PNAS丨刘聪/陆珺霞合作阐释RIPK3通过液-固相转变形成功能性淀粉样纤维的结构基础

发布时间:Apr 30, 2021 12:00:00 AM     浏览次数:1

细胞程序性坏死(necroptosis)是一种重要的细胞死亡形式,其被广泛发现在多种人类疾病(特别是神经退行性疾病,如渐冻人症,阿尔兹海默病等)中起重要作用。细胞程序性坏死的信号通路以RIPK1 (receptor-interacting serine-threonine kinase 1)为核心,包括下游的RIPK3MLKL等关键蛋白。近年研究发现,RIPK1RIPK3可以通过液-固相转化形成功能性淀粉样纤维聚集体,介导necroptosis通路的信号传递。然而,目前对于淀粉样纤维的研究主要聚焦于病理性纤维(如帕金森病中的α-syn纤维,阿尔兹海默病中的Tau纤维等)。对功能性淀粉样纤维的动态组装与生理功能的研究还非常匮乏,很多关键科学问题有待解答。例如,功能性纤维的组装是否与病理性纤维有区别?功能性纤维如何运用其纤维结构行使生理功能?

 

近期,中科院上海有机化学研究所生物与化学交叉研究中心刘聪课题组与上海科技大学陆珺霞课题组合作,综合运用冷冻电镜和固态核磁技术阐释了RIPK3动态组装形成功能性淀粉样纤维的结构基础,并进一步探讨了RIPK3形成的功能性纤维在necroptosis信号传导中发挥作用的潜在机制。相关工作于202141日在线发表在PNAS上,题为:The structure of a minimum amyloid fibril core formed by necroptosis-mediating RHIM of human RIPK3

z1.png

在本工作中,研究者首先发现RIPK3RHIM结构域(RIPK3-CTD)能够通过液-固相转变形成淀粉样纤维聚集体。重要的是,RIPK3-CTD形成的纤维有别与之前研究报道的病理性淀粉样纤维,其具有超短的纤维螺旋周期(约23 nm)以及极窄的纤维宽度(约4 nm),并具有左手与右手螺旋纤维并存等特点。研究者进一步解析了RIPK3-CTD的纤维结构,发现RIPK3-CTD纤维核心由22个氨基酸通过形成三条β-strand组成了迷你S型结构(图1)。RHIM中的核心四肽458VQVG461S型结构的形成中起到关键作用,其中V458, V460β1中的V450, I452, N454形成了疏水立体拉链界面,而Q459则与β3上的L466相互作用将β2β3连接起来。

z2.png

RIPK3-CTD 纤维的迷你S型结构有别与目前所有已知的病理性淀粉样纤维结构。其纤维具有最小的纤维螺旋周期,在沿RIPK3-CTD纤维轴排布的临近两层RIPK3分子之间的螺旋转角为所有已知结构纤维中最大的(图2)。这种排布方式可以有效的避免其N端激酶结构域在纤维自组装过程中的空间位阻限制,并能调控其在纤维结构中更高效地进行分子间磷酸化反应,高效介导信号的级联放大与胞内传递。

z3.png

综上,该研究通过结合不同生物物理学手段研究了RIPK3通过液-固相转化形成功能性淀粉样纤维的结构基础,展示了功能性淀粉样纤维与病理性纤维的区别,并进一步讨论了这种具有特殊结构的功能性纤维在RIPK3介导细胞程序性坏死信号传导中的生物学意义。相关工作为进一步探索细胞内参与不同生理过程的功能淀粉样纤维聚集体的结构与功能奠定了基础。


中国科学院生物与化学交叉研究中心 版权所有 电话:021-68582285/68582282
地址:上海市浦东张江高科技园区海科路100号 沪ICP备05005485号-3